Die moderne Architektur strebt nach transparenten Gebäudehüllen und insbesondere nach nachhaltigen und bauphysikalisch adäquaten Glasfassaden. Typischerweise werden Glasfassaden entworfen, um eine Vielzahl von Zielen zu erfüllen, eines davon sind die Anforderungen an den Schallschutz. Eine zuverlässige Abschätzung der Schalldämmeigenschaften beliebiger Glasaufbauten ist aufgrund der Komplexität experimenteller Tests oder numerischer Simulationen zeitaufwendig und kostenintensiv. Daher wird in dieser Arbeit ein maschineller Lern‐Ansatz zur Prädiktion der akustischen Eigenschaften beliebiger Glasaufbauten vorgestellt.
SOUNDLAB AI Tool–Machine Learning zur Bestimmung des bewerteten Schalldämmmaßes
Date
Authors
Michael Drass, Michael Anton Kraus, Henrik Riedel, Ingo Stelzer
Conference / Journal
ce/papers